Innovations in Fuzzy Clustering - Theory and Applications
نویسندگان
چکیده
Spend your few moment to read a book even only few pages. Reading book is not obligation and force for everybody. When you don't want to read, you can get punishment from the publisher. Read a book becomes a choice of your different characteristics. Many people with reading habit will always be enjoyable to read, or on the contrary. For some reasons, this innovations in fuzzy clustering theory and applications tends to be the representative book in this website.
منابع مشابه
Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملUsing Greedy Clustering Method to Solve Capacitated Location-Routing Problem with Fuzzy Demands
Using Greedy Clustering Method to Solve Capacitated Location-Routing Problem with Fuzzy Demands Abstract In this paper, the capacitated location routing problem with fuzzy demands (CLRP_FD) is considered. In CLRP_FD, facility location problem (FLP) and vehicle routing problem (VRP) are observed simultaneously. Indeed the vehicles and the depots have a predefined capacity to serve the customerst...
متن کاملAnalyse Power Consumption by Mobile Applications Using Fuzzy Clustering Approach
With the advancements in mobile technology and its utilization in every facet of life, mobile popularity has enhanced exponentially. The biggest constraint in the utility of mobile devices is that they are powered with batteries. Optimizing mobile’s size and weight is always the choice of designer, which led limited size and capacity of battery used in mobile phone. In this paper analysis of th...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کامل